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Abstract

Decision making under severe lack of information is a ubiquitous situation in nearly every applied
field of engineering, policy, and science. A severe lack of information precludes our ability to determine a
frequency of occurrence of events or conditions that impact the decision; therefore, decision uncertainties
due to a severe lack of information cannot be characterized probabilistically. To circumvent this problem,
information gap (info-gap) theory has been developed to explicitly recognize and quantify the implications
of information gaps in decision making. This paper presents a decision analysis based on info-gap theory
developed for a contaminant remediation scenario. The analysis provides decision support in determining
the fraction of contaminant mass to remove from the environment in the presence of a lack of information
related to the contaminant mass flux into an aquifer. An info-gap uncertainty model is developed to
characterize uncertainty due to a lack of information concerning the contaminant flux. The info-gap
uncertainty model groups nested, convex sets of functions defining contaminant flux over time based
on their level of deviation from a nominal contaminant flux. The nominal contaminant flux defines a
reasonable contaminant flux over time based on existing information. A robustness function is derived
to quantify the maximum level of deviation from nominal that still ensures compliance for each decision.
An opportuneness function is derived to characterize the possibility of meeting a desired contaminant
concentration level. The decision analysis evaluates how the robustness and opportuneness change as a
function of time since remediation and as a function of the fraction of contaminant mass removed.

1 Introduction

Environmental and earth scientists are frequently required to provide scientifically defensible support in
decision-making processes related to important ecological problems (e.g. climate change, contaminant mi-
gration, carbon sequestration, nuclear waste storage, etc. (Harrington and Gidley, 1985; Caselton and Luo,
1992; Min et al, 2005)). The decisions are often based on analyses of predictions obtained with system mod-
els representing the physical processes and conditions related to the problem. For example, hydrogeologists
regularly provide modeling decision support to aid in the selection of contaminant remediation strategies
(Tartakovsky, 2007). In these cases, the model-based decision support is often driven by model predictions
of contaminant concentrations at a point of regulatory compliance. However, uncertainties in the model
predictions (predictive uncertainties) generally complicate the decision analysis. Predictive uncertainties
result from limits in existing information (information is used here to refer to knowledge and data) about
(1) governing processes, (2) boundary and initial conditions, and (3) state variables and process parameters.

The status quo is to estimate probabilistic uncertainties in the physical process model inputs (prior
uncertainties) and propagate these uncertainties through the physical process model to obtain estimates of
predictive uncertainties. This approach is commonly utilized in Bayesian decision analysis ((Schwede et al,
2008)), and is a sound and justifiable approach when the uncertainty of each combination of model inputs and
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conditions can be characterized probabilistically or by a frequency of occurrence . However, most decisions
related to environmental remediation frequently include uncertainties due to a severe lack of information,
and cannot be characterized probabilistically or by frequency of occurrence. These types of uncertainties can
be considered Knightian uncertainties, after the economist Frank Knight, who distinguished risk, which can
be quantified in a lottery sense, and uncertainty, which, in his definition, is immeasurable (Knight, 1921).

Therefore, in general, decision analyses providing the probabilistic confidence of success associated with
a particular decision are unrealistic and unreliable as the probability distribution functions (pdf’s) of the
potential events are unknown. In spite of this limitation, estimates for the confidence of success or failure
of decisions are commonly requested and provided for by these types of decision analyses, even when the
assumptions required to obtain the probabilities of events are highly questionable (Ben-Haim, 2006).

Probabilistic attempts to deal with a severe lack of information require invocation of the ”Principle of
Indifference“ (i.e. an assumption in probability theory that all currently conceivable events are equally prob-
able). This “Principle” is applied to justify the use of non-informative priors in Bayesian theory. However,
the validity of this “Principle” in a decision analysis cannot be verified (Ben-Haim, 2006).

A probabilistic analysis of uncertainties due to a lack of information are brought further into question
if the concept of a “collective” advocated by, among others, von Mises (1939), is taken in consideration.
According to von Mises, probabilities are meaningless outside of a collective. For example, the probability
that a 40-year-old man may die in the next year will be significantly different than the probability that a
40-year-old man who smokes will die in the next year, even though the same person can be a member of both
collectives. Therefore, probabilities are only relevant within the context of a collective, and are meaningless
when applied to a single element that can be grouped within multiple collectives. In cases of environmental
remediation under severe lack of information, where the important processes and properties are characterized
vaguely at best, it is hard to imagine an appropriate definition of a “collective”, not to mention a dataset
capable of characterizing the probability of success or failure for this “collective”. Applying model-based
Bayesian decision analyses under severe lack of information require a leap of faith in assuming that the
collective is a set of predictions produced by system models whose ability to correctly represent all potential
events cannot be verified due to the lack of information.

In general, environmental and earth scientists often encounter problems where the lack of information
is so severe, that characterizing the probability of all possible events is infeasible. For example, contami-
nant concentration predictions may be highly dependent on infiltration events driven by precipitation and
snowmelt, ultimately affecting the contaminant mass flux into an aquifer (infiltration is defined as a ground-
water mass flux at the top of the regional aquifer here; infiltrated water originates on the ground surface
and some of the groundwater carries the contaminant mass to the aquifer). Statistical characterization of
infiltration events based on past records often provides poor predictions of the future probabilities of such
events (Wallis, 1967; Kobold and Sušelj, 2005). The future predictions are additionally complicated when
the predictive (compliance) period extends for a long period of time (for example, on the order of the millions
of years in the case of nuclear waste repositories) which requires the consideration of the potential impact
of climate changes (man-made and natural). For many natural phenomena, including infiltration, a strong
potential exists to encounter a single extreme event or sequence of less extreme events outside what has been
observed in the past. Uncertainties of this type are due to a gap in our information (Knightian uncertainties),
and not an uncertainty related to which event in a set of events with known probabilities will occur.

The need for non-probabilistic analyses of uncertainty in order to make reasonable environmental man-
agement decisions has been increasingly recognized. Hipel and Ben-Haim (1999) develop an info-gap decision
analyses for water treatment facility design given a lack of information concerning the maximum possible
flow rate. Levy et al (2000) combine multi-attribute value theory and info-gap decision theory to quantify
the robustness of policy alternative to ecological info-gap uncertainties. Fox et al (2007) demonstrate an
info-gap approach to calculate the power and sample size in ecological investigations with uncertain design
parameters and distributional form. McCarthy and Lindenmayer (2007) develop an info-gap decision analy-
sis to evaluate timber production and urban water supply management alternatives subjected to an info-gap
uncertainty in fire risk. Strandlund and Ben-Haim (2008) developed an info-gap decision analysis to choose
between price-based and quantity-based environmental regulation. Hine and Hall (2010) developed an info-
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gap decision analysis for flood management to account for info-gap uncertainties in flood models. Riegels
et al (2011) evaluate the effects of info-gaps in hydro-economic model inputs on the selection of water price
and target value for an ecological status parameter. In this paper, we develop an info-gap decision analysis
on a contaminant remediation scenario where an info-gap exists concerning the contaminant mass flux into
an aquifer.

2 Info-gap theory

The info-gap theory provides a general theoretical framework for decision analyses. An info-gap decision
analysis for a specific problem requires three components: (1) model appropriately characterizing system
behavior, (2) decision uncertainty model consistent with the info-gap theory, (3) decision performance goals
(required and desired). These components are used to derive immunity functions, robustness and oppor-
tuneness functions, characterizing the immunity to failure and immunity to windfall success, respectively, of
alternate decisions.

2.1 System model

The system model in an info-gap decision analysis characterizes the system performance based on the alter-
nate decisions subjected to the ambient uncertainty. For environmental management decision scenarios, this
will generally be a physical process model characterizing the natural and man-made processes controlling
critical outputs influencing the decision.

2.2 Info-gap uncertainty model

Info-gap uncertainty models rank an information gap by the uncertainty parameter α. The uncertainty
model is comprised of nested sets of uncertain entities (i.e. parameters, functions, etc. which have info-gap
uncertainties) ranked by the largest information gap that can be included in the set (Ben-Haim, 2006). This
approach is in sharp contrast to probabilistic or fuzzy logic approaches to uncertainty, which distribute un-
certainty across all potential events to define recurrence-frequency or plausibility (Ben-Haim, 2006). Info-gap
uncertainty models provide less constraints and are intended for cases where lack of information precludes
the ability to distribute uncertainties across all potential events, or even identify all potential events. Vari-
ous types of info-gap decision uncertainty models include energy-bound, envelope-bound, slope-bound, and
Fourier-bound models (Ben-Haim, 2006). The selection and development of info-gap uncertainty models is
scenario specific requiring few axiomatic constraints.

2.3 Decision performance goals

Performance goals in an info-gap decision analysis express a required or desired reward. In environmental
decision scenarios, a required performance goal is commonly a constant fixed by a regulatory standard (e.g.
maximum concentration limit; MCL). A desired performance goal is not a regulatory requirement, but may
entail a more stringent goal than the regulatory standard. For instance, it may be desirable by decision
makers or stakeholders to meet a stringent health standard that is below the regulatory standard.

2.4 Immunity functions

The immunity functions define the immunity to failure (robustness) and immunity to windfall (opportune-
ness) of alternate decisions. The robustness function defines the maximum horizon of uncertainty (α) where
failure cannot occur. As we typically lack the information to know the actual horizon of uncertainty, the
info-gap uncertainty model is an unbounded function of the horizon of uncertainty in general. This can be
expressed linguistically as

α̂(q) = max{α : the required performance goal is satisfied} (1)
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Figure 1: Contamination remediation scenario diagram

where q is a vector containing the alternate decisions and α̂(q) is the robustness function.
The opportuneness function defines the minimum horizon of uncertainty (α) where windfall success cannot

occur. Large values of opportuneness indicate that large deviations from nominal (large ambient uncertainty)
are needed in order to enable the potential of exceptional success. Small values of opportuneness indicate
that a low ambient uncertainty provides the potential for exceptional success. Linguistically, opportuneness
can be expressed as

β̂(q) = min{α : the possibility of meeting the desired performance goal exists} (2)

where β̂(q) is the opportuneness function.
The complimentary nature of robustness and opportuneness are evident. The robustness and opportune-

ness can be sympathetic or antagonistic in a decision analysis, depending on the particular scenario.

3 Contaminant remediation decision scenario

The decision scenario of contaminant remediation presented below is representative of an actual case study
at Los Alamos National Laboratory (LANL) related to an existing contamination site. A diagram of the
contaminant spill scenario is presented in Figure 1 and described below. A contaminant spill with known
mass has been released on the ground surface and is spatially distributed in the soil below the release
location. The contaminant is known to chemically degrade over time (for example, due to radioactive
decay or chemical hydrolysis). An aquifer utilized for municipal water supply lies below the contaminated
soil. A compliance point is located near the spill where regulatory health standards dictate the maximum
contaminant concentration. Exceeding the regulatory standard will compromise the municipal water supply,
incur fines from the regulatory agency, and compromise the integrity of those involved in the remediation
effort. Removing the contaminant from the soil is expensive, and entails risks of exposure to workers
and redistribution of the contaminant in the environment. A decision analysis is desired to determine
the robustness of selecting various fractions of the original mass to remove in order to ensure regulatory
compliance given an info-gap in the contaminant mass flux into the aquifer (contaminant plume source
strength). The proposed info-gap analysis can be applied to physical process models with different complexity.
The analysis presented below uses a relatively simple analytical model, which can be considered a first step
in a tiered process that utilizes more complicated models in subsequent stages.

3.1 Contaminant transport model

An analytical solution describing the two-dimensional advective-dispersive transport of a contaminant within
an aquifer is (Wang and Wu, 2009)

C(x, y, t) =
1

4πn
√
DxDy

∫ t

0

I(t− τ) exp

[
−λτ − (x− uτ)2

4Dxτ
− y2

4Dyτ

]
dτ

τ
,
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−∞ < x, y <∞, t > 0, (3)

where C(x, y, t) [ML3] is a contaminant concentration in the aquifer, I(t) [ML−1T−1] is the transient con-
taminant flux (source strength) at the point x = y = 0 per unit depth of the aquifer, n is the porosity, Dx

and Dy are the principal dispersion coefficients [L2T−1], λ [T−1] is the first-order constant of decay, and u
[LT−1] is the pore water velocity. The groundwater flow is along the x-direction. Assuming that the point
of compliance is located directly downgradient from the plume source along the x axis, we can simplify the
model by setting y = 0 as

C(x, t) =
1

4πn
√
DxDy

∫ t

0

I(t− τ) exp

[
−λτ − (x− uτ)2

4Dxτ

]
dτ

τ
. (4)

Let us define an impulse response function,

h(x, t) =
1

4πnt
√
DxDy

exp

[
−λt− (x− ut)2

4Dxt

]
, (5)

and substitute this into equation 4 allowing the system model that will be applied in the info-gap analysis
to be defined as

C(x, t) =

∫ t

0

I(t− τ)h(x, τ)dτ. (6)

The functional form of equation 6 can be used in general to describe the effect of an impulse on a system.
Therefore, while the application presented here is contaminant remediation with uncertain contaminant flux,
much of the development of the decision analysis presented here can be applied to other decision analyses
with analogous uncertainties due to unknown impulse functions.

3.2 Contaminant flux info-gap uncertainty model

The info-gap uncertainty model for the contaminant flux into an aquifer is defined as the potential for
deviations in the contaminant flux from a nominal value, and can be expressed as

U(α, Ĩ(t)) =

{
I(t) :

∫ t
0
[I(t)− Ĩ(t)]2dt∫ t

0
Ĩ2(t)dt

≤ α2

}
, α ≥ 0, (7)

where Ĩ(t) is the nominal contaminant flux function and α defines levels of info-gap uncertainty describing
deviation of the contaminant flux from nominal. Equation 7 defines an info-gap uncertainty model repre-
senting nested, convex sets of contaminant flux functions I(t). Functions in these sets can contain a single
extremely large event, a high frequency of relatively smaller events, or any combination thereof, as long as∫ t
0
[I(t)− Ĩ(t)]2dt/

∫ t
0
Ĩ2(t)dt ≤ α2.

Equation 7 presents an instance of an energy-bound info-gap uncertainty model. Energy-bound models
have the ability to capture uncertainties in transients, where prior information concerning the potential for
large deviations or series of small deviation is extremely limited.

3.3 Contaminant concentration performance goals

In the current scenario, the required performance goal is fixed by regulatory standards. The performance
requirement is defined as the regulatory limit on the contaminant concentration (e.g. MCL) at the point of
compliance as

C(x′, t) ≤ Cc, ∀ t > 0, (8)

where x′ is a point of compliance (e.g. site boundary, pumping well) and Cc is the critical contaminant
concentration based on a regulatory standard.
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In decision analyses, frequently, there is a desired performance goal that is not strictly required but
would be beneficial if met. This allows us to explore the opportunity of achieving this performance given
alternative decisions. In a contaminant remediation decision scenario, the desired system performance may
be a recommended contaminant concentration threshold that is less than the regulatory standard. The
desired performance goal is described as

C(x′, t) ≤ Cw, ∀ t > 0, (9)

where Cw is the desired contaminant concentration.
The performance goals expressed in inequalities 8 and 9 illustrate the fact that uncertainty can be both

pernicious, causing failure, and propitious, enabling the potential of exceptional windfall success (Ben-Haim,
2006). For example, the ambient uncertainty is pernicious when making a decision to ensure the performance
requirement of inequality 8, while it is propitious when making a decision to allow the potential to surpass
the performance expressed in inequality 9.

3.4 Robustness function

Considering the contaminant flux uncertainty model (equation 7) and the performance requirement (equa-
tion 8), the decision robustness function can be expressed as

α̂(q, Cc) = max

{
α :

(
max

I∈U(α,Ĩ)
C(x′, t, q)

)
≤ Cc

}
, ∀ t > 0, (10)

where q is the fractional percent of the contaminant mass removed, defined as q = Mr/Mt, where Mr is the
mass removed at t = 0 and Mt is the total mass released in the environment. The robustness function α̂ is
dimensionless. More complicated schedules for contaminant removal can also be applied: for example, mass
removal within a given period of time, or periodically over several periods. The contaminant flux into the
aquifer and contaminant concentrations in the aquifer will decrease with increasing q, therefore I = f(t, q)
and C = f(x, t, q).

Equation 6 can be expressed as the addition of the nominal concentration and the deviation from the
nominal concentration at location x′ as

C(x′, t, q) =

∫ t

0

Ĩ(t− τ, q)h(x′, τ)dτ︸ ︷︷ ︸
C̃(x′,t,q)

+

∫ t

0

[I(t− τ, q)− Ĩ(t− τ, q)]h(x′, τ)dτ︸ ︷︷ ︸
C(x′,t,q)−C̃(x′,t,q)

(11)

where the nominal concentration C̃(x′, t, q) is the concentration resulting from the nominal contaminant flux.
An upper limit can be determined for the second integral in equation 11 by using the Schwarz inequality
(Weisstein, 2011) as(∫ t

0

[I(t− τ, q)− Ĩ(t− τ, q)]h(x′, τ)dτ

)2

≤
∫ t

0

[I(τ, q)− Ĩ(τ, q)]2dτ

∫ t

0

h(x′, τ)2dτ (12)

Using inequality 12 in equation 11 leads to the following inequality:

C(x′, t, q) ≤ C̃(x′, t, q) +

√∫ t

0

[I(τ, q)− Ĩ(τ, q)]2dτ

∫ t

0

h(x′, τ)2dτ (13)

Considering the info-gap uncertainty model (equation 7), it is recognized that∫ t

0

[I(τ, q)− Ĩ(τ, q)]2dτ ≤ α2

∫ t

0

Ĩ2(τ)dτ. (14)

Substituting this into inequality 13, a maximum concentration at x′ up to uncertainty α can be defined as
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max
I∈U(α,Ĩ)

C(x′, t, q) = C̃(x′, t, q) + α

√∫ t

0

I2(τ, q)dτ

∫ t

0

h2(x′, τ)dτ (15)

Setting the maximum concentration equal to Cc, as defined by inequality 8, and solving for α results in the
robustness function as a function of time

α̂(q, t) =
Cc − C̃(x′, t, q)√∫ t

0
I2(τ, q)dτ

∫ t
0
h2(x′, τ)dτ

. (16)

As inequality 8 requires compliance at all times, the robustness function considering all times is

α̂(q) = min
t>0

α̂(q, t). (17)

where the robustness is dimensionless and defines the maximum fractional error in the actual contaminant
flux from nominal that still ensures compliance for alternative decisions.

3.5 Opportuneness function

Considering the desired performance described by equation 9, a complimentary equation to equation 10 can
be defined for the opportuneness function β̂, also dimensionless, as

β̂(q, Cw) = min

{
α :

(
min

I∈U(α,Ĩ)
C(x′, t, q)

)
≤ Cw

}
, ∀ t > 0. (18)

The complimentary nature of robustness and opportuneness is apparent by comparison of equations 10 and
18.

In our decision scenario, the opportuneness function quantifies the least level of uncertainty required
to maintain the potential that C(x′, t, q) will not exceed Cw. This leads to an equation complimentary to
equation 15 defining the minimum possible concentration up to uncertainty α as

min
I∈U(α,Ĩ)

C(x′, t, q) = C̃(x′, t, q)− α

√∫ t

0

I2(τ, q)dτ

∫ t

0

h2(x′, τ)dτ (19)

Setting the minimum concentration equal to Cw and solving for α produces the opportuneness function
(complimentary to the robustness function; equation 16) as

β̂(q, t) =
C̃(x′, t, q)− Cw√∫ t

0
I2(τ, q)dτ

∫ t
0
h2(x′, τ)dτ

. (20)

As the performance expressed by inequality 9 is desired at all times, the opportuneness function considering
all times is

β̂(q) = max
t>0

β̂(q, t). (21)

where the opportuneness is dimensionless and defines the minimum fractional error in the actual contaminant
flux from the nominal that maintains the possibility of meeting the desired performance goal.
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Figure 2: Nominal contaminant flux into the aquifer (a) and nominal contaminant concentration at the
compliance point (b) over time since remediation for various fractions of contaminant removed q
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Figure 3: Robustness function versus time since remediation for various fractions of contaminant mass
removed q. Note that robustness is plotted on a log scale.

4 Contaminant remediation info-gap decision analysis

The nominal contaminant flux into the aquifer is defined as Ĩ(t, q) = 1000 ∗ (1− q) ∗ exp[−0.05 ∗ t] [kg/m/a]
and plotted for fractions of contaminant removed q as a function of time since remediation in Figure 2 (a).
Constraining this estimate is not possible without further field studies or data acquisition. The following
info-gap decision analysis will evaluate how wrong can our estimate of the contaminant flux into the aquifer
be and still ensure compliance at various fractions of contaminant mass removal. The associated nominal
predictions of concentration at the compliance point x′ = 20 m are plotted in Figure 2 (b). It is assumed
that the critical regulated concentration at x′ is Cc = 25 kg/m3 and that it would be a desirable outcome if
the concentration did not exceed Cw = 5 kg/m3.

It is assumed that the parameters of the contaminant transport model (equation 4) are well known and
with negligible uncertainty compared to the info-gap in the contaminant flux. These parameters are defined
as Dx = 30 m2/a, Dy = 7 m2/a, n = 0.1, λ = 1 /a, and u = 30 m/a. These values are representative of the
flow conditions at the LANL site. Extension of the current analysis by incorporation of probabilistic and
info-gap uncertainties of these parameters is possible (Hipel and Ben-Haim, 1999; Ben-Haim, 2006).

The robustness function is plotted versus time since remediation for various fractions of contaminant
mass removed q in figure 3. Robustness functions at a particular time since remediation versus the fraction
of contaminant removed are plotted in figure 4 (refer to equation 16. As we are interested in compliance at
all times, the minimum robustness for each decision q is also plotted as a dotted line in figure 4 (refer to
equation 17). In our example, robustness represents the maximum fractional error in the nominal contami-
nant flux that ensures that C(x′, t, q) < Cc (equation 10). For example, a value of α̂ = 1 indicates that the
fractional error in the nominal can be 100% (i.e. potential deviations from the nominal contaminant flux can
be as high as twice the nominal contaminant flux), and the associated decision still ensures compliance.

Plots of the opportuneness functions are presented in figures 5 and 6. In this example, the opportuneness
function represents the minimum fractional error in the nominal contaminant flux that sustains the possibility
that C(x′, t, q) < Cw (equation 18). For example, a value of β̂ = 0.1 indicates that the relative error in the
nominal contaminant flux must be at least 10% to enable the possibility that the concentration will remain
below the desired performance goal.

In figures 3, 4, 5, and 6, the relationship between robustness/opportuneness and effort is apparent. In-
creased robustness and decreased opportuneness is only possible with increased effort and cost (proportional
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Note that robustness is plotted on a log scale.
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equation 21). Note that β̂(q, t = 30a) = 0 for all q.

0

1

2

3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

α̂
[-
] β̂

[-]

q

α̂(q)
β̂(q)

Figure 7: Robustness and opportuneness functions considering all times (refer to equations 17 and 21,
respectively) versus the fraction of contaminant removed. Note that both robustness and opportuneness are
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to the fraction of contaminant mass removed q). Interesting variations in robustness for given times since
remediation as a function of q are observed in figure 4, demonstrating that for small values of q, late times
have greater decision robustness, while for larger values of q, early times demonstrate greater robustness.
Robustness for all times approach infinity as q → 1, as removing all the contaminant will provide infinite
robustness (of course, at a potentially unjustifiable cost). In figures 5 and 6, it is clear that the opportuneness

increases (β̂ decreases) with time and fraction of mass removed. In figures 5 and 6, it can be determined
that after 30 years, the opportuneness becomes zero for the decision to do nothing (q = 0), while at 90%
removal (q = 0.9), no uncertainty is necessary to allow the possibility that C(x′, t) < Cw for all times.

Figure 7 plots the decision robustness (16) and opportuneness (20) functions together. From equations 16
and 20, the following expression can be derived to illustrate the complimentary relationship between robust-
ness and opportuneness in the current decision scenario:

β̂(q, t) =
Cc − Cw√∫ t

0
I2(τ, q)dτ

∫ t
0
h2(x′, τ)

− α̂(q, t), (22)

where it is apparent that as α̂ increases, β̂ decreases. As it is desirable to select an alternative that increases
α̂ and decreases β̂, these two objectives are sympathetic in this decision scenario. An increase in robustness
increases the opportuneness.

Figure 7 can be used by a decision maker to evaluate the implications of the ambient uncertainty on
alternative decisions. For example, at values of q less than around 0.04 (removal of 4% of the contaminant
mass), the decision robustness is zero, indicating that failure to meet compliance (the required performance
goal) is ensured based on the nominal contaminant flux. It should be noted that if the actual contaminant
flux is lower than the nominal estimate, failure may not occur for low values of fraction removed. Decisions
in this range also require the largest potential deviations from the nominal to enable the possibility of
meeting the desired goal (equation 9) (relative error in the contaminant flux of at least 57%, or β̂ = 0.57,
at q = 0.04). A decision to remove approximately 6% (q = 0.06) of the contaminant mass will ensure
compliance (the required performance goal) only if the actual contaminant flux deviates from the nominal
by less than 1% (α̂ = 0.01), while the corresponding potential for exceptional success will require deviations

from the nominal of at least approximately 56% (β̂ = 0.56). Deciding to remove over approximately 76%
(q = 0.76) of the mass ensures meeting the desired goal at zero deviation from the nominal (decisions in
this range ensure that the concentration will be below Cw based on the nominal contaminant flux), while
compliance is ensured in this range at increasing potential deviation from nominal. Deciding to remove 50%
(q = 0.5) of the mass will ensure compliance if the actual contaminant flux deviates from the nominal by
less than around 39% (α̂ = 0.39), while the corresponding potential for exceptional success will require the

actual contaminant flux to deviate by at least 39% (β̂ = 0.39). Other decisions can be evaluated similarly.
Based on Figure 7, the decision makers may want to select a decision in a range where (1) the robustness

is greater than zero and (2) the opportuneness is greater than zero if there is relatively higher acceptance
of potential risk (i.e. fraction of mass removal q between 0.1 and 0.75). If decision makers prefer to select
a decision with relatively lower risk, an alternative decision in the range where the opportuneness is equal
or very close to zero (q > 0.75) will provide higher immunity to failure. Decisions in the range where the
robustness is equal or very close to zero (q < 0.1) provide very low immunity to failure, and are potentially
unacceptable.

In an actual application, there may be some concept of the cost associated with each q. The relationship
between the cost and q is not expected to be linear; typically, the cost increases sharply with the increase
of q. As a result, analogous figures to figures 3 and 4 can be formulated plotting decision robustness versus
cost. A decision maker can use these plots to determine the cost to achieve different levels of robustness and
opportuneness. This info-gap decision analysis can be extended to incorporate other info-gap or probabilistic
uncertainties due to severe lack of information of other model inputs or conditions; for example, information
regarding the groundwater velocity or the aquifer dispersion in the zone between the plume source and the
compliance point can be extremely limited.
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5 Conclusions

Geoscientists are often confronted with decision scenarios related to environmental management where the
lack of information precludes the ability to reasonably estimate probabilistic uncertainty models. In these
cases, it is not possible to evaluate robustness in the context of the probability of exceeding a contaminant
concentration at a compliance point (Caselton and Luo, 1992). This paper demonstrates an approach that
can be applied in these cases of severe uncertainty using an info-gap decision analysis. The proposed decision
making framework can be applied for environmental management of contaminant remediation but also to
problems such as radioactive waste storage, carbon sequestration, and climate change.
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